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Abstract—The motivation of this work relies on the
fact that, until now, the tuning conditions presented in

the literature for assuring global asymptotic stability are

conservative in the sense that controller gains for joints with a
little or nothing of gravitational torques are tuned in the same

form that the joints which support large gravitational torques.
In this paper we extend the more recent tuning conditions

presented in the literature for a class of nonlinear PID global
regulators of robot manipulators. Such an extension has

permitted to carry out by the first time experimental essays
for a class of nonlinear PID global regulators, which are

presented in this paper using a two degrees of freedom robot
manipulator.

Keywords: robot manipulators, nonlinear PID, global sta-

bility, tuning conditions.

I. INTRODUCTION

The study of PID controllers in robot manipulators has

been subject of extensive researches in many years over the

past. Several works have been presented proving that PID

controllers guarantee semiglobal asymptotically stability

of the closed-loop equilibrium point in the case of set-

point control (Arimoto, 1984), (Arimoto and Suzuki, 1990),

(Kelly, 1995), (Ortega et al., 1995), (Alvarez-Ramirez et

al., 2000), (Meza et al., 2007), (Hernandez et al., 2008).

Due to the classical linear PID controllers has only been

proved to be semiglobally asymptotically stable, several

nonlinear PID global controllers have been proposed in

some works (Arimoto, 1995), (Kelly, 1998), (Santibañez

and Kelly, 1998). These nonlinear PID controllers, unlike

the linear PID controller, yield global asymptotical stability

of the closed-loop equilibrium point. In (Santibañez and

Kelly, 1998) it was proposed a class of nonlinear PID global

regulators for robot manipulators, which encompasses the

particular cases of (Arimoto, 1995) and (Kelly, 1998).

However, an important drawback exists: the tuning con-

ditions for assuring global asymptotic stability for the afore-

mentioned nonlinear PID controllers are far from being ac-

ceptable in practical applications. The latter in the sense that

the tuning conditions previously reported are conservative

and overestimated because such conditions are established

as expressions of norms of gain parameter vectors and

matrices. This make that all the joint gains be restricted

by the same rule, in such a way that the conditions for

larger and smaller joints is the same. This paper, inspired in

(Hernandez-Guzman et al., 2008) and (Hernandez-Guzman

and Silva-Ortigoza, 2011), addresses a tuning procedure

which allows to obtain conditions less restrictive for joints

in order to get better performances. Such tuning procedure

has permitted to carry out experimental essays which are

reported in this work using a two degrees of freedom robot

manipulator.

Finally, some remarks on notation. Given some vector

x ∈ R
n and some matrix A(x) ∈ R

n×n, the Euclidean

norm of x is defined as ‖x‖ =
√

x and the spectral norm

of A(x) is defined as ‖A(x)‖ =
√

λmax(AT A) where

λmax(A
T A) is the largest eigenvalue of the symmetric ma-

trix AT A. In the case where A(x) ∈ R
n×n is a symmetric

matrix, then ‖A‖ = maxi |λi(A)|, where λi(A) and | · |
are eigenvalues of A(x) and the absolute value function,

respectively. λmin stands for the smallest eigenvalue of A
for all x ∈ R

n. We use symbol yi to represent the i–th

component if y is a vector or the i–th diagonal entry if Y
is a diagonal matrix.

II. PRELIMINARIES

A. Robot Dynamics

Consider the dynamic model for a serial n–link rigid

robot, given by

M(q)q̈ + C(q, q̇)q̇ + g(q) + Fv q̇ = τ (1)

where q̈, q̇, q ∈ R
n are the vectors of joint accelerations,

joint velocities and joint positions, respectively, τ ∈ R
n is

the vector of applied torques, M(q) ∈ R
n×n is the symmet-

ric positive definite manipulator inertia matrix, C(q, q̇) ∈
R

n×n is the matrix of centripetal and Coriolis torques, g(q)
is the vector of gravitational torques obtained as the gradient

of the robot potential energy, i. e. g(q) =
∂U(q)

∂q , and

Fv ∈ R
n×n is a constant diagonal definite positive matrix

which represent the viscous friction coefficient at each joint.

We assume that all joints of the robot are of the revolute

type.

B. Properties of the robot dynamics

In the following two properties of the dynamics (1) are

presented.
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Property 1. Matrices M(q) and C(q, q̇) satisfy:

q̇T

„

1

2
Ṁ (q) − C(q, q̇)

«

q̇ = 0 (2)

Ṁ(q) = C(q, q̇) + CT (q, q̇). (3)

Furthermore, there exists a positive constant kc1
such that,

for all x, y, z ∈ R
n:

‖C(x, y)z‖ ≤ kc1‖y‖‖z‖. (4)

Property 2. The gravitational torque vector g(q) is
bounded for all q ∈ R

n. This means that there exist finite
constants k′

i ≥ 0 such that:

sup
q∈Rn

|gi(q)| ≤ k′
i i = 1, · · · , n, (5)

where gi(q) stands for the elements of g(q). Equiva-

lently, there exists a constant k′ such that ‖g(q)‖ ≤
k′ for all q ∈ R

n.
Furthermore there exists a positive constant kgi

such that

n
X

j=1

max
q

˛

˛

˛

˛

∂gi(q)

∂qj

˛

˛

˛

˛

≤ kgi ,

for all q ∈ R
n and i = 1, 2, ..., n.

Finally, we present some useful results.
Theorem 1: (Kelly et al., 2005) Let f : R

n → R be a
continuously differentiable function with continuous partial
derivatives up to at least second order. Assume that:

f(0) = 0 ∈ R (6)

∂f

∂x
(0) = 0 ∈ R

n (7)

If the Hessian matrix ∂/∂x[∂f(x)/∂x] is positive definite

for all x ∈ R
n, then f(x) is a globally positive definite and

radially unbounded function.
Theorem 2: (Kelly et al., 2005) (Mean value theorem

for vectorial functions). Consider the continuous vectorial
function f : R

n → R
m. If f i(z1, z2, ..., zn) has continuous

partial derivatives for i = 1, ..., m, then for each pair of
vectors x, y ∈ R

n and each w ∈ R
m there exists ξ ∈ R

n

such that:

[f(x) − f(y)]T w = wT ∂f(z)

∂(z)

˛

˛

˛

˛

z=ξ
(x− y) (8)

where ξ is a vector on the line segment that joins the vector

x and y.
Definition 1: Let A be a n × n matrix with aij repre-

senting its element at row i and column j. The matrix A is
said to be strictly diagonally dominant if:

|aii| >

n
X

j=1,j 6=i

|aij |, i = 1, ..., n. (9)

Definition 2: If A is a n × n symetric and strictly diag-

onally dominant matrix and if aii > 0 for all i = 1, ..., n,

then A is positive definite.

Definition 3: F(ka, ε, x) with 1 ≥ ka > 0, ε > 0, and

x ∈ R
n denotes the set of all continuous differentiable in-

creasing functions sat(x) = [sat(x1) sat(x2) . . . sat(xn)]T

such that

• sat(−x) = −sat(x)
• sgn(x) = sgn(sat(x))
• |x| ≥ |sat(x)| ≥ ka|x|, ∀ x ∈ R : |x| < ε

• ε ≥ |sat(x)| ≥ kaε, ∀ x ∈ R : |x| ≥ ε
• 1 ≥ (d/dx)sat(x) ≥ 0

• ‖sat(x)‖ ≥
{

ka‖x‖, if ‖x‖ < ε
kaε, if ‖x‖ ≥ ε

Definition 4: Given positive constants l and m, with l <
m, a function Sat(x; l, m) : R → R : x 7→ Sat(x; l, m)
is said to be a strictly increasing linear saturation function

for (l, m) if it is locally Lipschitz, strictly increasing, C2

differentiable and satisfies:

1) Sat(x; l, m) = x when |x| ≤ l
2) |Sat(x; l, m)| < m for all x ∈ R.
Lemma 1: Let A ∈ R

n be a matrix with aij representing
the element in row i and column j, y x, sat(x) two vectors
such that:

x =

2

6

6

6

4

x1

x2

.

.

.
xn

3

7

7

7

5

, sat(x) =

2

6

6

6

4

sat(x1)
sat(x2)

.

.

.
sat(xn)

3

7

7

7

5

(10)

where sat(·) is a function like that described in Definition 3.

If A is symmetric and strictly diagonally dominant, namely

|aii| >

n
∑

j=1,j 6=i

|aij|, i = 1, 2, ..., n, (11)

and aii > 0 for all i = 1, 2, ..., n, then

sat(x)T Ax > 0, ∀ x ∈ R
n, with x 6= 0 ∈ R

n;

i.e., sat(x)T Ax is a positive definite continuous function.

Outline of the proof: The proof is based in the Sylvester

Theorem proof by using the following nice property of the

saturation function sat(x) ∈ F(ka, ε, x):

(xi + xj)(sat(xi) + sat(xj)) ≥ 0,

(xi − xj)(sat(xi) − sat(xj)) ≥ 0, ∀ xi, xj ∈ R

III. MAIN RESULT

A. A class of nonlinear PID controllers

Consider a class of nonlinear PID controllers like that
presented in (Santibañez and Kelly, 1998), which can be
written as:

τ = ∇q̃Ua(q̃) − Kvq̇ + Kiw

w(t) =

Z t

0
[αsat(q̃(σ)) − q̇(σ)]dσ + w(0) (12)

where Kv and Ki are diagonal positive definite n × n
matrices, q̃ = qd − q denotes the position error vector,

α > 0 is a constant scalar, Ua(q̃) is a kind of C1 artificial

potential energy induced by a part of the proportional

term of the controller whose properties were established

in (Santibañez and Kelly, 1998).

Two examples of this kind of nonlinear PID regulators

are:

• Controller presented in (Kelly, 1998)

τ = Kpq̃ − Kvq̇ + Kiw (13)

w(t) =

Z t

0
[αsat(q̃(σ)) − q̇(σ)]dσ + w(0)
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This controller has associated an artificial potential
energy Ua(q̃) given by

Ua(q̃) =
1

2
q̃T Kpq̃ (14)

• Controller presented in (Santibañez and Kelly, 1998)

τ = Kpsat(q̃) − Kvq̇ + K′
iw (15)

w(t) =

Z t

0
[αsat(q̃(σ)) − q̇(σ)]dσ + w(0)

This controller has associated an artificial potential
energy Ua(q̃) given by

Ua(q̃) =

Z q̃

0

Kpsat(r)dr :=

n
X

i=1

Z q̃i

0
kpisat(ri)dri (16)

A particular case of this control law was presented in
(Arimoto, 1995), with

sat(x) = Sin(x) =

8

<

:

sin(x) for |x| ≤ π
2

1 for x > π
2

−1 for x < −π
2
.

The stability conditions for the latter nonlinear PID con-

trollers presented in (Santibañez and Kelly, 1998), as well

as in (Kelly, 1998) for the first nonlinear PID controller

and (Arimoto, 1995) for the second one, are very con-

servative in the sense that are far from being acceptable

in practical applications, specially when they are used

in robot manipulators with many degrees of freedom. In

the following a new tuning procedure which allows to

obtain stability conditions less restrictive to assure global

asymptotic stability is proposed.

B. Stability analysis (New tuning conditions)

Inspired in (Hernandez-Guzman et al., 2008) and

(Hernandez-Guzman and Silva-Ortigoza, 2011), in this sec-

tion we present new tuning conditions for the stability

analysis of the class of nonlinear PID controllers introduced

in (Santibañez and Kelly, 1998).
B.1. Consider the control law (13):

τ = Kpq̃ − Kv q̇ + Kiw

w =

Z t

0
[αsat(q̃(σ)) − q̇(σ)]dσ + w(0),

which was proposed in (Kelly, 1998) and reanalyzed in

(Hernandez-Guzman and Silva-Ortigoza, 2011). This con-

trol law has been rewritten to express it like the equation

(12). Kp, Kv and Ki are n × n diagonal positive definite

matrices, q̃ = qd − q denotes the position error vector and

α > 0 is a small constant suitably selected.
By using the control law (13) into the dynamics (1), we
obtain the following closed-loop system

d

dt

2

6

6

6

6

6

4

q̃

q̇

z

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

−q̇

M (q)−1[Kpq̃ − Kv q̇ + Kiz
−C(q, q̇)q̇ − Fvq̇ − g(q) + g(qd)]

αsat(q̃) − q̇

3

7

7

7

7

7

5

(17)

where z is defined as

z =

Z t

0
[αsat(q̃(σ)) − q̇(σ)]dσ + w(0) − K−1

i g(qd)
| {z }

z(0)

(18)

so that (17) is an autonomous differential equation whose
unique equilibrium is:

[q̃T q̇T zT ]T = 0 ∈ R
3n. (19)

Proposition 1. There always exist a positive scalar constant

α and positive definite matrices Kp, Kv , Ki ∈ R
n×n

such that the equilibrium point (19) from (17) is globally

asymptotically stable.
Proof. Based on the Lyapunov theory, we propose the
following Lyapunov function candidate

V (q̃, q̇, z) = V1(q̃, q̇,z) + V2(q̃) + V3(q̃) (20)

where

V1 =
1

2
[q̇ − αsat(q̃)]T M (q)[q̇ − αsat(q̃)] +

1

2
zT Kiz

+
n

X

i=1

Z q̃i

0
αfvi sat(ri)dri +

n
X

i=1

Z q̃i

0
αkvi sat(ri)dri

V2 =
1

2
q̃T Kpq̃ − α2

2
sat(q̃)T M (q)sat(q̃)

V3 = U(qd − q̃) − U(qd) +
1

2
q̃T K∗

p q̃ + g(qd)T q̃,

where Kp = Kp + K∗
p . Thus, (20) will be a radially

unbounded positive definite function provided that V2 and
V3 be also a radially unbounded positive definite function.
To this end, we provide lower bounds on the following
terms:

1

2
q̃T Kpq̃ =

1

2

n
X

i=1

kpi q̃2
i (21)

−α2

2
satT (q̃)M (q)sat(q̃) ≥ −

n
X

i=1

α2

2
λmax{M (q)}sat2(q̃i)

≥ −
n

X

i=1

α2

2
λmax{M (q)}H(q̃i)

(22)

H(q̃i) =

8

<

:

q̃2
i , |q̃i| ≤ ε

ε2, |q̃i| > ε

From (21) and (22) we can conclude that there always exist
large enough positive constants kpi

, i = 1, ..., n, such that:

1

2
kpi q̃

2
i >

α2

2
λmax{M (q)}H(q̃i) ∀ q̃ 6= 0 ∈ R

n (23)

and hence

V2 =
1

2
q̃T Kpq̃ − α2

2
sat(q̃)T M (q)sat(q̃) > 0 ∀ q̃ 6= 0 ∈ R

n

On the other hand, according to Theorem 1, and Definition

1 and 2, V3 is definite positive if (Hernandez-Guzman et

al., 2008)

k∗
pi

> kgi
(24)

Finally, we can conclude that (20) is definite positive and

radially unbounded if (23) and (24) are satisfied.
It is possible to verify that, using Property 1, the time

derivative of (20) along the trajectories of the closed-loop
system (17) is given by:

V̇ = −q̇T Fv q̇ − α ˙sat(q̃)M (q)q̇ − αsat(q̃)T C(q, q̇)T q̇

−αsat(q̃)T [Kpq̃ + g(qd) − g(q)] − q̇T Kvq̇. (25)
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Negative semidefiniteness may be proved by upper bound-
ing each element of (25):

−q̇T Fv q̇ ≤ −λmin{Fv}‖q̇‖2

−q̇T Kvq̇ ≤ −λmin{Kv}‖q̇‖2

−αsat(q̃)T C(q, q̇)T q̇ ≤ αεkc‖q̇‖2

−α ˙sat(q̃)T M (q)q̇ ≤ αλmax{M}‖q̇‖2

and using Theorem 2, we have

−αsat(q̃)T [g(qd) − g(q)] = −αsat(q̃)T ∂g(z)

∂z

˛

˛

˛

˛

z=ξ
q̃, (26)

for some ξ belonging to the line that joins qd and q.

Finally the time derivative V̇ can be upper bounded by:

V̇ ≤ −[λmin{Fv} + λmin{Kv} − α(εkc + λmax{M})]‖q̇‖2

−αsat(q̃)T

"

Kp +
∂g(z)

∂z

˛

˛

˛

˛

z=ξ

#

q̃ (27)

By using Definition 2, Definition 3 and Lemma 1, we can

conclude that αsat(q̃)T

[

Kp +
∂g(z)

∂z

∣

∣

∣

z=ξ

]

q̃ is definite

positive if the matrix

[

Kp + ∂g(z)
∂z

∣

∣

∣

z=ξ

]

fulfills

kpi
> kgi

; (28)

and by choosing a small enough value for α > 0 such that

[λmin{Fv} + λmin{Kv} − α(εkc + λmax{M})] > 0, (29)

we have that (25) is negative semidefinite. Therefore,
we can use the LaSalle invariance principle to assure
global asymptotic stability provided that (23), (24) and
(29) are satisfied. This completes the proof of Proposition 1.

B.2. Consider a control law similar to that presented
in (Arimoto, 1995) and (Santibañez and Kelly, 1998):

τ = KpSat(Bq̃; l, m) − Kvq̇ + Kiw (30)

w =

Z t

0
[αSat(Bq̃(σ); l, m) − q̇(σ)]dσ + w(0),

where now, Sat(·) is defined in Definition 4 and we have

used a new gain B = diag{β1, β2, ..., βn} multiplying

q̃ inside the saturation function. B, Kp, Kv and Ki are

n × n diagonal positive definite matrices, l and m are the

saturation limits and α > 0 is a small constant suitably

selected.
By using the control law (30) into the dynamics (1), we
obtain the following closed-loop system

d

dt

2

6

6

6

6

6

4

q̃

q̇

z

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

−q̇

M (q)−1[KpSat(Bq̃; l, m) − Kvq̇ + Kiz
−C(q, q̇)q̇ − Fvq̇ − g(q) + g(qd)]

αSat(Bq̃; l, m) − q̇

3

7

7

7

7

7

5

(31)

where z is defined as

z =

Z t

0
[αSat(Bq̃(σ); l, m) − q̇(σ)]dσ + w(0) − K−1

i g(qd)
| {z }

z(0)

(32)

so that (31) is an autonomous differential equation whose
unique equilibrium is:

[q̃T q̇T zT ]T = 0 ∈ R
3n. (33)

From here, the saturation limits l and m are omitted for

reasons of space.

Proposition 2. There always exist a positive scalar constant

α and positive definite matrices B, Kp, Kv , Ki ∈ R
n×n

such that the equilibrium point (33) from (31) is globally

asymptotically stable.
Proof. In base to Lyapunov theory, we propose the follow-
ing Lyapunov function candidate

V (q̃, q̇, z) = V1(q̃, q̇,z) + V2(q̃) + V3(q̃) (34)

where

V1 =
1

2
[q̇ − αSat(Bq̃)]T M (q)[q̇− αSat(Bq̃)] +

1

2
zT Kiz

+
n

X

i=1

Z q̃i

0
αfvi Sat(βiri)dri +

n
X

i=1

Z q̃i

0
αkvi Sat(βiri)dri

V2 =

Z q̃

0

KpSat(Br)dr − α2

2
Sat(Bq̃)T M (q)Sat(Bq̃)

V3 =

Z q̃

0

[−g(qd − r) + K∗
pSat(Br; l, m) + g(qd)]T dr, (35)

and Kp = Kp+K∗
p . Thus, (34) will be a radially unbounded

positive definite function provided that V2 and V3 be also a

radially unbounded positive definite function.
Consider first V2. Note that according to definition 4 and
by direct integration we find that:

Z

q̃

0

Sat
T

(Br; l, m)Kpdr =

n
X

i=1

Gi(q̃i),

Gi(q̃i) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

kpi
2

βiq̃
2

i , |βiq̃i| ≤ l

kpi
2

l2

βi
+ kpi

l(q̃i − l
βi

), βiq̃i > l

kpi
2

l2

βi
− kpi

l(q̃i + l
βi

), βiq̃i < −l

(36)

Also note that:

−α2

2
Sat

T (Bq̃)M(q)Sat(Bq̃) ≥ −
n

X

i=1

α2

2
λmax{M(q)}Sat

2(βiq̃; l, m)

≥ −
n

X

i=1

α2

2
λmax{M(q)}H(q̃i)

H(q̃i) =

8

<

:

β2

i q̃2

i , |βiq̃i| ≤ m

ε2, |βiq̃i| > m

(37)

From (36) and (37) we can conclude that there always exist
large enough positive constants kpi

, i = 1, ..., n, such that:

Gi(q̃i) >
α2

2
λmax{M (q)}H(q̃i), ∀q̃i 6= 0 ∈ R, i = 1, ..., n (38)

and hence:
Z

q̃

0

SatT (Br)Kpdr−α2

2
SatT (Bq̃)M (q)Sat(Bq̃) > 0 ∀ q̃ 6= 0 ∈ R

n

(39)

Now, we show that
∫

q̃

0
[−g(qd − r) +K∗

p Sat(Br; l, m) +
g(qd)]T dr is a positive definite function. First assume that
|q̃i| ≤ l/βi, for i = 1, ..., n. Hence, according to Definition

4 we can write:
∫

q̃

0
[−g(qd − r) + K∗

pSat(Br; li, mi) +

g(qd)]T dr =
∫

q̃

0
[−g(qd − r) + K∗

pBr + g(qd)]
T dr. This

mean that:

∂

∂q̃

"

∂

∂q̃

Z

q̃

0

[−g(qd − r) + K∗
pBr + g(qd)]T dr

#

=

∂g(q)

∂q
+ K∗

pB, ∀ |q̃i| ≤ l/βi, i = 1, ..., n (40)
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which, according to (Hernandez-Guzman and Silva-
Ortigoza, 2011) and (Hernandez-Guzman et al., 2008), is
a positive definite if:

k∗
pi

βi > kgi >

n
X

j=1

max
q

˛

˛

˛

˛

∂gi(q)

∂qj

˛

˛

˛

˛

, i = 1, ..., n. (41)

and, in base to Theorem 1, this proves that
∫

q̃

0
[−g(qd −

r)+K∗
p Br+g(qd)]

T dr is positive definite as long as |q̃i| ≤
l/βi, for i = 1, ..., n. Now suppose that k and j represent all
integers from 1 to n such that q̃j < l/βj and q̃k < −l/βk .
According to (Zavala-Rio and Santibañez, 2007), Definition
4 and Property 2, we can write:

Z

q̃

0

[−g(qd − r) + K∗
pSat(Br; l, m) + g(qd)]T dr

=
n

X

i=1

Z q̃i

0
[−gi(ri) + gi(qd) + k∗

pi
Sat(βiri; l,m)]dri

= P1 + P2 (42)

where

g1(r1) = g1(qd1 − r1, qd2
, ..., qdn

)

g2(r2) = g2(q1, qd2
− r2, qd3

, ..., qdn
)

.

.

.

gn(rn) = gn(q1, q2, ..., qn−1, qdn
− rn)

and

P1 =
n

X

i=1,i6=j 6=k

Z q̃i

0
[−gi(ri) + gi(qd) + k∗

pi
βiri]dri

+
X

j

Z l/βj

0
[−gj(rj) + gj(qd) + k∗

pj
βjrj ]drj

+
X

k

Z l/βk

0
[−gk(rk) + gk(qd) + k∗

pk
βkrk]drk

P2 =
X

j

Z q̃j

l/βj

[−gj(rj) + gj(qd) + k∗
pj

Sat(βjrj ; l, m)]drj

+
X

k

Z q̃k

−l/βk

[−gk(rk) + gk(qd) + k∗
pk

Sat(βkrk; l,m)]drk

≥
X

j

Z q̃j

l/βj

[k∗
pj

l − 2k′
j ]drj +

X

k

Z −l/βk

q̃k

[k∗
pk

l − 2k′
k]drk

=
X

j

“

k∗
pj

l − 2k′
j

”

„

q̃j − l

βj

«

+
X

k

“

k∗
pk

l − 2k′
k

”

„

−q̃k − l

βk

«

(43)

Note that P2 is always positive if:

k∗
pj

l > 2k′
i, (44)

because q̃j > l and q̃k < −l. Finally, since we have

proven that P1 is positive we conclude that
∫

q̃

0
[−g(qd −

r) + K∗
pSat(Br; l, m) + g(qd)]T dr is a positive definite

and radially unbounded function of q̃.

The latter prove that (34) is positive definite and radially

unbounded.
It is possible to verify that, using Property 1, the time

derivative of (34) along the trajectories of the closed-loop
system (31) is given by:

V̇ = −q̇T Fv q̇ − α ˙Sat(Bq̃)M (q)q̇ − αSat(Bq̃)T C(q, q̇)T q̇

−αSat(Bq̃)T [g(qd) − g(q)] − αSat(Bq̃)T KpSat(Bq̃) − q̇T Kvq̇(45)

Negative semidefiniteness may be proved by upper bound-
ing each element of (45):

−q̇T Fv q̇ ≤ −λmin{Fv}‖q̇‖2

−q̇T Kv q̇ ≤ −λmin{Kv}‖q̇‖2

−αSat(Bq̃)T C(q, q̇)T q̇ ≤ αkc1m
√

n‖q̇‖2

−α ˙Sat(Bq̃)T M (q)q̇ ≤ αλmax{B}λmax{M}‖q̇‖2

−αSat(Bq̃)T KpSat(Bq̃) ≤ −α

n
X

i=1

kpi |Sat(βiq̃i)|2

−αSat(Bq̃)T [g(qd) − g(q)] ≤ αhT (Bq̃)Eh(Bq̃) (46)

where βi ≥ 1, i = 1, 2, ..., n, h(Bq̃) =
[|Sat(β1q̃1)|...|Sat(βn q̃n)|]T , and E is a symmetric
matrix with all of its entries bounded (Hernandez-Guzman
and Silva-Ortigoza, 2011). Finally the time derivative V̇
can be upper bounded by:

V̇ ≤ −[λmin{Fv} + λmin{Kv} − α(m
√

nkc + λmax{B}λmax{M})]‖q̇‖2

−α

n
X

i=1

[λmin{Kp − E}] |Sat(Bq̃i)|2 (47)

By choosing Kp such that

λmin(Kp − E) > 0 (48)

and a small enough value for α > 0 such that

[λmin{Fv} + λmin{Kv}
−α(m

√
nkc1 + λmax{B}λmax{M})] > 0, (49)

we have that (45) is negative semidefinite. Therefore, we

can use the LaSalle invariance principle to ensure global

asymptotic stability provided that (41), (44), (48) and (49)

are satisfied. This complete the proof of Proposition 2.

IV. EXPERIMENTAL RESULTS

In this section is presented a experimental essays on

the CICESE robot, using the controllers (13) and (30).

The CICESE is a 2-dof robot manipulator with revolute

joints whose dynamic model is presented in (Kelly and

Santibañez, 2003). The numerical values of the parameters

for the CICESE robot are shown in Table I. λmax{M} and

kc1
were calculated following the procedure proposed in

(Kelly and Santibañez, 2003).

TABLE I

NUMERICAL VALUES OF THE PARAMETERS FOR THE CICESE ROBOT.

Parameter Joint 1 Joint 2 Units

kgi
42.1198 3.6540 [N m/rad]

k′
i 40.2928 1.8270 [N m]

τmax 150 15 [N m]

λmax{M} 2.533 [kg m2]

kc1 0.336 [kg m2]

In the following, the experimental results for each control

law presented above are shown. The responses obtained

in the experimental results is the best obtained for their

respective controllers.

1. Consider the control law (13)

τ = Kpq̃ − Kvq̇ + Kiw

w =

Z t

0
[αsat(q̃(σ)) − q̇(σ)]dσ + w(0)
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which we have used to perform a real-time experimental

essay on the CICESE robot. The controller gains used are

presented in Table II. The joint errors and torques obtained

in the experiment essay are shown in Fig. 1.

TABLE II

CONTROLLER GAINS.

gains Joint 1 Joint 2 Units

Kp 95 9.5 [N m/rad]

Kv 20 16 [N m s/rad]

Ki 50 0.13 [N m / rad]

α 5 [1/s]

L, M 1.1, 1.2 [rad]
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Figura 1. Position errors and torque obtained using control law (13).

2. Consider the control law (30)

τ = KpSat(Bq̃; l, m) − Kvq̇ + Kiw

w =

Z t

0
[αSat(Bq̃(σ); l, m) − q̇(σ)]dσ + w(0),

which we have used to perform a real-time experimental

essay on the CICESE robot. The controller gains used are

presented in Table III. The joint errors and torques obtained

in the experiment essay are shown in Fig. 2.

TABLE III

CONTROLLER GAINS.

gains Joint 1 Joint 2 Units

Kp 125 12.5 [N m/rad]

Kv 50 4 [N m s/rad]

Ki 1 1 [N m / rad]

B 30 20 [N m / rad]

α 0.000001 [1/s]

L, M 1.1, 1.2 [rad]
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Figura 2. Position errors and torque obtained using control law (30).

The controller parameters for both controllers were se-

lected in such a way that the torque of each actuator remains

under the maximum permitted torque (|τi| < τmaxi
). Due

to the control law (30) has a saturation function in the

proportional part, it is possible choose larger proportional

gains than those of the control law (13). This fact allows

to achieve the desired position faster for the controller (30)

than the controller (13) (see Fig. 1 and 2). It is easy to prove

that controller parameters fulfill the tuning conditions for

assuring global asymptotic stability.

V. CONCLUSIONS

In this paper new tuning conditions for a class of nonlin-

ear PID global regulators were found. By using Lyapunov’s

stability theory new tuning conditions were established,

which are less restrictive than those shown in (Santibañez

and Kelly, 1998), (Arimoto, 1995) and (Kelly, 1998). For

validation purposes, experimental results were reported us-

ing the CICESE robot manipulator.
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